1 Recurrence Relations

1.1 Concepts

1. A **homogeneous** recurrence relation does not include any extra constants (e.g. $a_n = a_{n-1} + a_{n-2}$) and a **nonhomogeneous** recurrence relation contains one (e.g. $a_n = a_{n-1} + 4$). The **order** of a recurrence relation is the "farthest" back the relation goes. For instance, the order of $a_n = a_{n-1} + a_{n-3}$ is 3 because we need the term 3 terms back (a_{n-3}) . A **linear** recurrence relation has all the a_i terms being linear and a recurrence relation with **constant coefficients** is one where the coefficients in front of the a_i are all constants.

1.2 Problems

2. For the following recurrence relations, find their order and label them as homogeneous, linear, and/or with constant coefficients.

(a)
$$a_n = a_{n-1} + na_{n-1}^2$$

(b)
$$a_n = n^2 a_{n-1} - a_{n-2}$$

(c)
$$a_n = 4a_{n-1} - 2a_{n-4} + 3$$

(d)
$$a_n = a_{n-1}^2 - n^2$$

(e)
$$a_n = a_{n-2}$$

(f)
$$a_n = a_{n-1} - a_{n-2}$$

		(a)	(b)	(c)	(d)	(e)	(f)
	order	1	2	4	1	2	2
Solution:	homogeneous?	yes	yes	no	no	yes	yes
	linear?	no	yes	yes	no	yes	yes
	constant coefficients?	no	no	yes	yes	yes	yes

3. Find constants A, B such that $a_n = An + B$ is a solution to the recurrence relation $a_n = 2a_{n-1} - 3a_{n-2} + 2n$.

Math 10A Friday, 7/20/2018

Solution: We plug in $a_n = An + B$ to get

$$An + B = 2(A(n-1) + B) - 3(A(n-2) + B) + 2n =$$

$$2An - 2A + 2B - 3An + 6A - 3B + 2n = (-A + 2)n + 4A - B.$$

So, we get that A = -A + 2 or A = 1 and B = 4A - B or B = 2A = 2. So $a_n = n + 2$.

4. Verify that $a_n = n + 1$ is a solution to $a_n = 3a_{n-1} - 3a_{n-2} + a_{n-3}$.

Solution: We plug in $a_n = n + 1$ to get

$$n+1=3(n-1+1)-3(n-2+1)+(n-3+1)=n+3-2=n+1.$$

So it is a solution to the recurrence relation.

5. Find constants A, B such that $a_n = An + B$ is a solution to the recurrence relation $a_n = a_{n-1} + a_{n-3} + n + 3$.

Solution: We plug in $a_n = An + B$ to get

$$An + B = A(n-1) + B + A(n-3) + B + n + 3 = (2A+1)n - 4A + 2B + 3.$$

So, we get that A = 2A + 1 or A = -1 and B = -4A + 2B + 3 or B = 4A - 3 = -7. So $a_n = -n - 7$.

6. Verify that $a_n = 1 - n$ is a solution to $a_n = 2a_{n-1} - a_{n-2}$.

Solution: We plug in $a_n = 1 - n$ to get

$$1 - n = 2(1 - (n - 1)) - (1 - (n - 2)) = 2 - 2n + 2 - 1 + n - 2 = -n + 1.$$

So it is a solution to the recurrence relation.