Worksheet, Discussion \#25; Friday, 7/20/2018
Instructor name: Roy Zhao

1 Recurrence Relations

1.1 Concepts

1. A homogeneous recurrence relation does not include any extra constants (e.g. $a_{n}=$ $a_{n-1}+a_{n-2}$) and a nonhomogeneous recurrence relation contains one (e.g. $a_{n}=$ $\left.a_{n-1}+4\right)$. The order of a recurrence relation is the "farthest" back the relation goes. For instance, the order of $a_{n}=a_{n-1}+a_{n-3}$ is 3 because we need the term 3 terms back $\left(a_{n-3}\right)$. A linear recurrence relation has all the a_{i} terms being linear and a recurrence relation with constant coefficients is one where the coefficients in front of the a_{i} are all constants.

1.2 Problems

2. For the following recurrence relations, find their order and label them as homogeneous, linear, and/or with constant coefficients.
(a) $a_{n}=a_{n-1}+n a_{n-1}^{2}$
(b) $a_{n}=n^{2} a_{n-1}-a_{n-2}$
(c) $a_{n}=4 a_{n-1}-2 a_{n-4}+3$
(d) $a_{n}=a_{n-1}^{2}-n^{2}$
(e) $a_{n}=a_{n-2}$
(f) $a_{n}=a_{n-1}-a_{n-2}$

Solution:		(a)	(b)	(c)	(d)	(e)	(f)
	order	1	2	4	1	2	2
	homogeneous?	yes	yes	no	no	yes	yes
	linear?	no	yes	yes	no	yes	yes
	nstant coefficients?	no	no	yes	yes	yes	yes

3. Find constants A, B such that $a_{n}=A n+B$ is a solution to the recurrence relation $a_{n}=2 a_{n-1}-3 a_{n-2}+2 n$.

Solution: We plug in $a_{n}=A n+B$ to get

$$
\begin{gathered}
A n+B=2(A(n-1)+B)-3(A(n-2)+B)+2 n= \\
2 A n-2 A+2 B-3 A n+6 A-3 B+2 n=(-A+2) n+4 A-B .
\end{gathered}
$$

So, we get that $A=-A+2$ or $A=1$ and $B=4 A-B$ or $B=2 A=2$. So $a_{n}=n+2$.
4. Verify that $a_{n}=n+1$ is a solution to $a_{n}=3 a_{n-1}-3 a_{n-2}+a_{n-3}$.

Solution: We plug in $a_{n}=n+1$ to get

$$
n+1=3(n-1+1)-3(n-2+1)+(n-3+1)=n+3-2=n+1
$$

So it is a solution to the recurrence relation.
5. Find constants A, B such that $a_{n}=A n+B$ is a solution to the recurrence relation $a_{n}=a_{n-1}+a_{n-3}+n+3$.

Solution: We plug in $a_{n}=A n+B$ to get

$$
A n+B=A(n-1)+B+A(n-3)+B+n+3=(2 A+1) n-4 A+2 B+3
$$

So, we get that $A=2 A+1$ or $A=-1$ and $B=-4 A+2 B+3$ or $B=4 A-3=-7$. So $a_{n}=-n-7$.
6. Verify that $a_{n}=1-n$ is a solution to $a_{n}=2 a_{n-1}-a_{n-2}$.

Solution: We plug in $a_{n}=1-n$ to get

$$
1-n=2(1-(n-1))-(1-(n-2))=2-2 n+2-1+n-2=-n+1
$$

So it is a solution to the recurrence relation.

